Cable Thermal Limits

Real-Time Distribution Cable Temperature Monitoring

Maria De La Cruz, PE
Austin Energy
Transmission & Distribution Planning and
Regulatory Analysis

Austin Energy at a Glance

- 9th largest municipally-owned electric utility
- 2,600 MW of firm generation
- Electric service area of 437 square miles serving 400,000 customers
- Provide service to
 - City of Austin
 - Travis County
 - Small portion of Williamson County

Discussion Points

- Current Process
- A New Approach Distributed Temperature Sensing
- Installation Types
- Demonstration Phase
- Full Substation Implementation
- Future???
- Questions

Ampacity Programs

- In-house developed programs
- Software packages
 - CYMCAP
 - ETAP
 - EPRI UT work station
 - PowerAmp
 - USAmp+
 - Others

Parameters

- All conduits 5-inch, PVC schedule 40 with 2 inch spacing (from edges)
- 25°C ambient temperature
- Soil Rho of 90¹
- Fill Rho of 55¹
- Average dry soil
- Heavy aggregate fill
- Burial depth of thirty six inches to top of duct bank²

Ampacity Study

- Based on NEC Neher-McGrath approach
- Transient Temperature Calculation
- Urban Load Profile
- Normal Rating
 - Uniformly raising loading of all circuits in duct bank until one reaches a temperature of 90°C
- Emergency Rating
 - Loading on the circuit is raised while holding the remaining circuits constant and a temperature of 130°C is reached

Concerns With The Current Process

- How accurate is the existing model?
- Is the existing model too conservative?
 - Assumes all circuits in a given duct are loaded at the same level
- During summer months useable circuit capacity may be reduced
 - Higher temperatures
 - Higher loading on feeders
 - Can loads be safely increased?

A New Approach - Distributed Temperature Sensing

 Monitoring system that utilizes fiber optic technology to provide real-time temperature data along the entire length of a circuit

Installation Types

- Power cable with imbedded fiber
- Fiber pulled in adjacent conduit
- Fiber pulled thru already populated conduit

Sample Output

Demonstration Phase - Goals

- Limit the risk of physical cable damage during the installation
- Improve the utilization of available circuit capacity
- Maintain safe cable operating temperature
- Limit the risk of cable damage due to high temperature operation

McNeil Substation

- 12.5 KV substation
- 4 30 MVA Transformers
- 8 feeders serving commercial & residential customers

Demo Phase – Fiber Installation

- Issues/Concerns
 - Damage to existing power cable
 - 90 degree corners
 - Long vertical runs
- Worked with vendor on these issues
- Installed fiber only in limiting run to minimize risk

Demonstration Phase

MC-07 Feeder Selected

- Normal Rating = 490 Amps
- Overhead feeder
- Limiting run identified
- Loading increased above 500 Amps

Results

- DTS = 58° C
- Calculated = 61.66° C

Full Substation Implementation

Fiber Installation

- Took about 2 weeks
- 3 runs of fiber installed in limiting runs only
- Fiber runs ranged in length from 800 to 2,400 feet
- AE crews did installation to minimize # of splices
- Only splices are located in the control house
- Rack mounted DTS unit installed in the control house

Fiber Installation

Project Status

- Data being collected
 - DTS unit holds 1 year of data
- Preliminary look at data
 - Calculated results significantly differ from real-time data (WHY???)

Future ???

- Temperature Based Alarm Limits
- Maximize the capacity of the existing infrastructure
- Operation of cable closer to its maximum capacity
- Deferral of projects
- Other ???

Questions?

